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1. INTRODUCTION

If ona desires to scale down a high-altitude electromagnetic pulse
(HEMP) waveiorm to illuminate and measure the response of a physically
scaled version of an Army tactical system, he is confronted with the
problem of how to measure the radiated pulse. What are the limitations
of existing field sensors? What new sensors are required? While th.s
repcrt is not intended by any means to exhaustively discuss these ques-
tions, it discusses specific ongoing work in this area by the Harry
Diamcnd Laboratories (HDL).

2. FABRICATION AND CALIBRATION OF D-DOT SENSOR FOR MEASURIN™ EARLY TIME
PORTION OF SCALED-DOWN HEMP

2.1 Background

Electromagnetic scale modeling of Army systems for experimen-
tally determining external coupling features requires the geuneration and
the measurement of extremely fast rising radiated pulses. Considerable
effort in the area of pulser design and fabrication has resulted in
radiated pulses with fast rise times of about 200 ps. Existing field
sensors at tihis facility were inadequate to accurately reproduce rise
times that fast. (Rise times in this report are measured from the 10-
to 90-percent level unless otherwise noted.) Consequently, an effort
was initiated to design and evaluate such a sensor.

Previous attempts at developing an electric field sensor re-
sulted in a sensor of generally poor response. Subsequently, the theory
of Baum! was used as the conceptual basis for fabricating and testing a
¢ifferential D-dot sensor for this application.

2.2 Theoretical Basis for Scale Modeling

Sinclair? has shown that when air in the full scale system is
simulated with air in the model, the following relationships are estab-
lished for all media being modeled (primed macroscopic properties refer
to the model media and the unprimed properties refer to the full-scale
system) :

U' = U (permeability),

le, E. Baum, An Equivalent-Charge Method for Defining Geometries of
Dipole Antennas, Air Force Weapons ’.aboratory, Albuquerque, NM, Electro-
magnetic Pulse Sensor and Simulatioi. Note 72 (24 January 1969).

26, Sinclair, Theory of Models of Electromagnetic Systems, Proc. IRE
(November 1948), 1364-1370,
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€ (perawittivity),
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1

po (conductivity),

P =Y.
where
p = mechanical scale factor,
y = scale factor for time.
Using these results, one sees that for p = 100 (that is, the model is

1/100 the size of the full scale system), the scale factor for time, vy,
equals 100. This dictates a simulated electromagne-ic field that has a
rise time approaching 100 ps. This represents a considerable challenge
in both the generation and the measurement of such rise times.

2.3 Experimental Approach

The Harry Diamond Laboratories has traditionally used time-
domain sampling techniques to observe the response of scaled-down Army
systems3-5 to simulated EMP radiation. The recording instrumentation
has been updated to consist of a digital processing oscilloscope con-
trolled by a minicomputer (Tektronix WP1221 Signal Processing System).
The computer's ability to signal average probe and sensor responses
greatly enhances the signal-to-noise ratio of the recorded waveforms.
Of significant importance is the computer's capability for mathematical
manipulation of the collected waveforms. This capability includes fast
Fourier transforms (FFT's), inverse fast Fourier transforms (IVFT's),
and integration, as well as other processes.

An in-house effort was initiated to fabricate and characterize
an electric (E-) field sensor to meet our requirements. A miniature
conical monopole (CM) antenna with dimensions as shown in figure 1(a)
was fed through a ground plane to the center conductor of a section of
50-(i semirigid cable, so that it became a monopole above ground (fig. 2).

3Andrew A. Cuneo, Jr., and James .J. Loftus, Scale Modeling for the
Perimeter Acquisition Radar (PAR) EMP Test, Harry Diamond Laboratories
HDL-TR-1761 (September 1976).

“Andrew A. Cuneo, Jr., James J. Loftus, and Robert A. Dyckson, EMP
Scale-Model Testing of an Army Brigade Signal Center, Harry Diamond
Laboratories HDL=-TM-77-29 (December 1977 ).

SAndrew A. Cuneo, Jr., and James .J. Loftus, Scale Modeling for the
PATRIOT Electromagnetic Pulse Test, Harry Diamond Laboratories, HDL-TM-
81-16 (May 1981).
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Figure 1. Test probe: (a) conical monopole and (b) conical dipole
Sensors.
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Figure 2. Conical monopole sensor mounted in ground plane of
transmission line.

The transmission line was driven by a fast-rising step function
generator (rise time <250 ps), and the output of the monopole was re-
corded via the digital processing oscilloscope., The E-field within the
transmission line, assuming a transverse electromagnetic (TEM) mode, can
be computed by using the formula E = V/h, where V is the voltage between
the plates and h is the plate spacing.

It was reasoned that the calibration factor for a M would be
twice that for a conical dipole (CD) (fig. 1b) having identical monopole
element dimensions. This difference is bhecause the two thecretically
identical outputs of a CD are added with a polarity reversal of one side




to account for the opposite polarity of the two sides. The total output
of the CD, the sum of the outputs for sides one and two, is then twice
that for the M when the CD and the (M are immersed in a field of the
same intensity. The CD is called a balanced sensor and is used to
cancel out the common-mode ambient noise induced on the radio frequency
(rf) semirigid coaxial cables attached to both sides of the sensor.

The results of this effort yielded a calibration factor for the
CM of 8.3 x 1012 V/m/Ves. The field is in volts per meter and the
computer integrated output yields the units of voltessecond. It was
intended that this sensor would be used to measure only the peak field
strength.

A CD was fabricated by forming, in effect, two transmission
line monopoles back to back on a small circular ground plane (fig.
1b). This yielded a dipole. This dipole was exposed to the horizon-
tally polarized free field radiation of a scale-model radiating source
(fig. 3, 4) with its axis oriented for maximum response. It was located
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Figure 3. Lloaded dipole antenna.
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Figure 4. Test volume and instrumentation enclosure.

high enough aboveground so that the peak amplitude of the pulse could be
observed before the ground reflected wave interfered with the incident
wave. While the response of one side of the CD was sampled and stored
on a magnetic disc, the other side was terminated in 50 Q. This proce-
dure was then reversed, with care taken so as not to disturb the
physical positioning of the CD relative to the radiation source or the
oscilloscope trigger signal antenna. It was then a simple matter in the
computer to reverse the polarity of the waveform representing the re-
sponse of one side of the CD and add it to the other. In this way, the
common-mode rejection characteristic of the balanced sensor was main-
tained. The resultant integrated output is shown in figure 5.

At this point, a program was written to compensate for the
high-frequency loss of the coupling cable and the delay line (app A).
The resultant waveform (fig. 6) is more than twice the amplitude of the
waveform in figure 5 because of the 6~-dB loss of the sampling system
delay line in addition to the cable loss. Comparing waveforms before
and after the high-frequency loss compensation shows that the rise time
improved by 46 ps (~8 percent).
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Figure 5. Integrated output of conical dipole sensor.
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compensation for cable and delay line loss; computer
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2.4 Results

The rise time of figure 6 (~553 ps) was calculated by the
computer using the 10- to 90-percent amplitudes of the leading edage.
Figure 7 shows the result of instructing the computer to calculate the
rise time using the 10- to 80-percent leading edge amplitudes. This

yields a rise time of approximately 206 ps.

This value scaled up by a

factor of 50 would represent a real world HEMP rise time of 10 ns. This
value is believed to be a more accurate estimate of the rise time of the

field.

To demonstrate this accuracy, the D-dot response peak amplitude

was normalized to a value of 1 (fig. 8) and transformed into the “re-
quency domain (fig. 9). Next, the original time-domain waveform was
manipulated by the computer so that it rose directly to a value of 1

(fig. 10).

(fig. 1), A comparison of the amplitude change

S

This waveform was then transformed into the freguency domain

in the frequency

domain shows very little, if any, increase in the higher frequencies.

There 1is reason to believe that the radiated field may bhe
Currently, other D
sensors are being fabricated to investigate the possibility.

rising even faster than these measurements indicate.
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The CD waveform peak amplitude (fig. 7) was next multiplied by

calibration factor of oM _ 8.3 {_[Q{%<Y/m/v-s
2 2

4.15 x 1012 y/m/ves .

The result shows a peak value of 87 v/m at a radial distance of 3.1 m
from the source.

The peak FE-field generated for this experiment was calculated
by measuring the incident and reflected voltages (fig. 12) associated
with the model radiator. From this information, one computes the
voltage driving the bicone. Using the following formula,® one calcu-
lates the peak radiated E-field:

inc 60vo
Ex "1z !
p k
where
inc = incident,
pk = peak,
V0 = driving voltage,
r = radial distance,
2, = bicone impedance,
so that
inc _ 60(1461 V)
pk (3.1 m) (300 Q)
= 94 V/m .

The CD measured value of 87 V/m is within 8 percent of the calculated
value.

57. Krause, Antennas, McGraw=-lill Book Co., New York (1950), 221.
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Figure 12. Measurement of incident and reflected voltages.

3. USE OF B~DOT AND D-DOT SENSORS TO CHARACTERIZE RADIATED FIELD FROM
ADVANCED DESIGN PULSE GENERATOR

3.1 Discussion

A new pulse generator was designed by HDL to improve the very
early time characteristics of the radiated waveform. The pulse from
this source was applied to the same radiator used in section 2. An EG&G
B-dot sensor, model MGL~7, and an HDL D-dot sensor were located directly
under the radiator (fig. 13). The B~dot sensor was mounted on a 12 x 12
ft (3.6 x 3.6 m) metal ground screen, The D-dot sensor was elevated
sufficiently above the model facility sand to allow the peak amplitude
of the incident field to be observed uncorrupted by the ground
reflection.
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Figure 13. Physical relationship of field quantities to antenna and
ground (k = propagation vector).
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3.2 Results

. The results of the experiment to determine the value
of E1;c from both calculation and measurement are shown in table 1., The
incigent E-field is related to the measured magnetic (H-) field by the
relationship

where we have assumed a perfect ground plane.

The recorded early time D-dot waveform (range is 1.3 m) 1is
presented in figure 14. We see that the rise time (10 to 90 percent) is
337 ps. There is a generally improved shape to the waveform when com-
pared with that in section 2. By using the B-dot sensor at 2.9 m, the
rise time (10 to 90 percent) measured is 428 ps (fig. 15). These wave-
forms have not been compensated for cable and delay line loss because

the existing compensation does not extend high enough in the frequency
domain.

-\
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Figure 14. D-dot response range = 1.3 m.
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Figure 15. B-dot response range = 2.9 m.
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reproduce the temporal waveforms.
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The need for very small sensors to achieve the proper frequency

cases, the signals are too small to
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"see" unless they are averaged 100

signal-to-noise ratio is adequate. Signal
in scale-modeling work.




APPENDIX A.--A BASIC LANGUAGE PROGRAM TO COMPENSATE FOR THE HIGH-
FREQUENCY LOSSES IN PASSIVE COMPONENTS

The Harry Diamond Laboratories has a computer controlled digitizing
oscilloscope using time-domain sampling (TDS) techniques to observe the
subnanosecond responses of model systems. While TDS allows the equiv-
alent recording of picosecond regime events, the system requires a delay
line that causes rise time degradation. Further loss of high-frequency
content is caused by the radio frequency (rf) cable that couples the
model response to the facility shielded enclosure. Fortunately, the
computer with 1its capacity for forward and inverse fast Fourier
transforms (FFT's) allows for data compensation. In fact, when the loss
versus frequency through any passive component is known, its effect can
be removed.

The HELIAX 25-m-long cable and the Tektronix 7M11 delay line were
frequency swept from 0.1 to 6.5 GHz, and their loss versus frequency was
recorded., This information is stored on a magnetic disc in the same
format as the FFT of a datum. The figure after listing A-1 shows the
loss of the cable that has been normalized to 1. Waveforms collected
through this cable can be transformed into the frequency domain by the
computer and then divided by the frequency response of the cable. The
resulting frequency-domain waveform is then inverse transformed yielding
a time-domain waveform with the high-frequency cable 1loss replaced.
This procedure is then repeated for the delay line.

Listings A-1 and A-2 present the basic language program to
compensate for the high~frequency losses in passive components.

19




APPENDIX A

LISTING A-1, PROGRAM 'CBLADD.MOD'
16 PEM PROGFEM HAME - ' CBLADD MOD' . 13 @aPRIL, 1979 JAL
2o FENM . PENAMED FROM: 'CABLE ADD' ... .JA-/0CT.80

39 REM  PURFOSE  FETRIEVE DATR FROM DX1 AMD COMPENSATE FOR LOSS
40 REM DUE TO CABLE W1 (59' ANDREWS HELIAX)

$@ PUGE-LET W$=" "

€0 WAUEFOPM @ IS ARCS1L).SH,HAS, URS

79 PPINT "PROGRAM HAME ' CBLAODD MOD'

€0 PRINT "RETFIVES DHTH GNO COMPENSATES FOR CABLE #1 LOSSES *

%0 FRINT "INPUT FILE NAME ©

180 INPUT FHS$

110 PAGE

120 CLOSE #1 -OPEN #1 RS Dx1 FN$ FOR PEQD

130 EOF #1 GOTO 199 |
140 READ W1.FNS.4.MA. Mk, PP,RT 1
150 READ #1.5US,PUS.PLS,CP$,CBS.ANS '

160 READ #1.PO$.R$.SF$,0LS, TBS )
170 KEFD #1.U$,CT$,DkS, W$ ‘

188 IF Ws$="CHBLE COMPENSATED" THEN GOSUB 1039 i
190 CLOSE #1

200 LET MsMAX(A)

210 LET T=CRSC(A, 1#M>

220 LET NaCRS(A. 9%M)

230 LET TaN-T

248 LET T=T¥SA

250 UIEWPORT 100,900, 309, 700

260 SETGR UIEW

270 GRAPH A

280 IF W$="CABLE COMPENSATED" THEN SMOUE 500,799
290 PRINT W$

300 LET P=MAX(A)

310 IF WSCO" * THEN LET CT$=CTS8" %% "ti$ 5
320 SMOUE 608,655 ‘

330 PRINT "MRX= ".MA 11
348 LET BO=CRS(A, 11MA)




APPENDEX

LISTING A-1, (Cont'd)

LET TP=CRZ(A, 9¥ME)
LET PT=C TP~B0)ISH

LET RT=RT/%. %99994E-19

LET PT=RT¥1000 LET RT=ITF(RT »LET RT=RT. 1000

SMOUE €09, 676

LET He=HAK( -1 )

PRINT “MIN= “iHA

SMOVE £00,610

PRINT “P.P= “;PP

SMOUE 158.728

PRINT "FILE NAME ", FHS; " ORTE ", DAS
SMOUE €09 320

PRINT "RT= ",RT," HS"

SMOUE 156, 200

PRIMNT SuU$
PRINT PUS,PLS.CPS$
PRINT CBS$." ".ANS;" ", POS

PRINT SF$.SF$.DLS

PRIMT TES.U$

PRINT CT$

LIJF#’:"[:“E‘LE COMPENSATED" THEN GOSUB 1059
A

REM GIVES FFT OF PREUIOUS DATA

WAVEFORM B IS BB(Z236).SB,HBS, UBS

WAUEFORM C IS CC(256)>.SC,HCS,UCS

DELETE OD.EE

OIM 0ODC236 ) .DIM EE(256)

LET A=R-MERCR)

zgngSB(gKE REMOUVES DOC COMPONENT FROM TIME DOMAIN WRUEFORM
REM ABOUE TRANSFORMS TIME INTO FREQUENCY DOMARIN

POLAR B.C
REM AMPLITUDE US FREQ IS NOW IN 'B' .PHASE US FREQ. IN 'C'.

PAGE\GRAPH B
SMOVE 390,720

A




APPENDIN A

LISTING A-1, (Cont'd)

7060 PRINT “FFT OF DATH ",FNS

T10 WAl PAGE-PRINT "00 YOU WISH TO CABLE COMPENSATE THIS DRTA 2"
7Z6 IHPUT P2

720 IF ks="v" THEN IF W$=" " THEN GOTD 760

749 IF Fs="Y" THEN IF W$="CHELE COMPENSATED" THEN GOSUB 1039

?%9 IF R$="N" THEN END

7ED DPEM #1 &5 DAD "CARBLE1 LOS" FOR FERD

P70 WAUEFORM 7 1S XR(1622 .S/, HKS, VIS

720 READ #1,.E$.7

796 CLOSE #1

838 FEM WRUEFORM ' 1S THE LOSS OF THE CRBLE Y2 FREQUENCY
glg §EEE THAT 1S. & MUMBER US FREQUENCY
28 FA

630 SMOUE 190.Z00FPINT ES

840 UIEWPOPT 100.809.700. 700 SETGR VIEW .GRAFM 7 ;

£5Q FOP MN=@ TO 25€ )

860 LET FE=SEBANM '
878 LET BB(M »=BB(N )/ (( ,7(FB/SK))) ;

689 IF FE=1E+10 THEN GOTO 700 i
890 NEXT N

900 PwGE GRAGFH B

910 ZMOUE 2%0.700\PRINT "THIS IS FFT OF ",FN$;" WITH CABLE LOSSES @DODED

920 FOR N=@ TN 256

330 LET 00=BB

940 LET EE=(CC

3%@ LET BR(N) =D0 NXCOSCEE(N)Y)

960 LET CC(N =DDCNIXSINCEE(N)>

87O NEXT N

9680 RFFT R.B.C. “INU"

990 PAGE

1002 LET AR=RA-MEACAA(O 20))

10190 LET Ws="CABLE COMPENSATED"

1020 GOTO 190 ;
igig ER;‘%NT "MY INFORMATION IS THAT CABLE COMPENSATION ALREADY DONE . " 4




LISTING A-1. (Cont'd) APPENDLY A

1059 PRINT “DO YO WISH TO STORE THIS COMPENSATED DATA ?*
10660 PRINT “BEFORE COMPENSATION, FILE NAME WAS  ",FNS$
1679 INPUT LS

1920 IF L$<-"Y" THEN IF L$<>"N" THEN GOTO 1050

1650 IF L$="N" THEW EMD

1100 IF L$="%" THEM PRINT “IMPUT NEW FILE NAME

1116 IF Le="7" THEN INPUT FN$

1120 IF L&=""" THEN OPEN #1 A4S (™1 FNS$ FOR WRITE

1128 UFITE #1.FNS. 4. M, HAP,RT

1149 WRITE #1 . <US,PUS.PLS,CPS.CBS. ANS

1150 WRITE #1,POL.SR$.SF$,0LE. TBS

11€6 WRITE #1,U8.CT$.Da8. US

1170 CLOSE #1

1180 PHGE-DIF 0K FHS

119 EMND

REARDY
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APPENDIN A

LISTING A-2. PROGRAM 'DLYADD.MOD'
19 PEM PROGRAM NGME: 'OLYADD MOD' . . . 13 APRIL, 1979 JA
26 RENM . PENAMED IN OCT 1988 FROM: 'DELAY AOO'

. o IR
39 REM  PURPOSE FETRIEVE DATA FROM DX1 AND COMPENSATE FOR LOSS
40 FEM  DUE TO DELAY #148
90 PAGELET W$=" "
€6 WRUEFORI &4 IS ARCS1L ). 54 . HAS, UAS
78 PRINT "PROGRAM N&ME . ' DL'Y&DD MOOD'
80 PRINT "PETRIVES DATA AND COMPENSARTES FOR DELAY #148 LOSSES *
90 PRIMT "IMPUT FILE M&ME.
100 INPUT FN$
110 PAGE
120 CLOSE #1-0PEN #1 wS DX1 FN$ FOR RERD
130 EOF #1 GOTO 110
140 READ #1.CME. A
150 CLOSE #1
160 LET M=MAx(R)
170 LET T=CRS(A, 1xM)
180 LET N=CRS(R, 8%M)
190 LET T=N-T
200 LET TaTxSA
210 VIEWPORT 190.909, 300, 799
220 SETGR UVIEW
238 GRAPH A
240 IF Ws="DELAY COMPENSATED" THEN SMOUVE 500,700
2350 PRINT W$
260 LET P=MAX(R)
270 SMOUVE 200,679
268@ PRINT "TR (10 TO 88%)= ",T;HAS
290 SMOVUE 500.730
300 LET FP=PX1000
318 PRINT "MAXs ";P," MILLIVOLTS"
320 SMOUE 109,200
330 IF WS<>" " THEN LET CMS=CM$L" XX “tNS$
342 PRINT CMS\NAIT




260
37

220
296
408
410
420
438
440
450
460

480
450
See
10
Sece
S38
340
el
360
S70
80
390
600
610
620
630
640
650
660
€70

650

LISTING A-2. e !

IF W$="DELAY COMPENSATED" THEN GOSUB 768
FEM GIUES FFT OF PREUIOUS DATA
WAUEFOPM B 1S BB 2565, 5B, HBS. VBS
DELETE DOD.EE

DI 00 256 »-DIM EEA 296>
WHUEFORM C 15 CCC25€ 5.5, HLS, UCS
LET A=n-MEA A

FFFT 4.B.C

POLAF B, O

PHGE - GFAPH B

TMOUE 200.729

PRINT "FFT OF DATH " .FHN$

WARIT PAGE

PRINT DO vOU WISH TO DELAHY COMPENSATE THIS DATA ~*
IHPUT PS$

[F P$="7" THEN IF W$=" " THEN GOTD S20

[F F$="v" THEN IF Lis="DELAY COMPENSATED" THEN GOSUE 740

IF R$="N" THEN END

OPEN #1 «S DXB "DELAY LOS" FOR READ
WAVEFOPM % IS ¥X(S511), 35X, HXS, Vs
READ #1.E$.%

CLOZE #!

FOR N=@ TO 256

LET FB=SB¥N

[F FB>=6 SE+09 THEN GOTO 620

LET BB(N)I=BB( N/ (7 XX(FB/SX)))
NEXT N

PAGE\GRAFH B

FOR N=@ TO 256

LET DO=BB

LET EE=CC

LET BB(N ) =DDCNO>XCOSCEE(N)Y)

LET CCCN=DDXNOXSINCEE(N )

NEXT N

RFFT A,B.C, "INUV"




AVPENDIN A
LISTING A=-2. (Cont'd)

700 FAGE

210 LET AR=GR-IEWL (B 29 )

720 LET Ws="DELHY COMPENSAHTED"

720 GOTO 198

249 PRPINT "My INFOFMATION 15 THAT DELAY COMPENSATION ALREADY DONE
758 EMD

760 PRINT 00 O WISH TO STORE THIS COMPENSATED DATA 7"

7?70 PRINT "BEFORE COMPENSATION, FILE NAME WRS ™".FNS$

780 IMFPUT LS

790 IF L&<."v" THEN IF L$.>"M" THEN GOTO 760

#00 IF L$="H" THEN END

10 IF L$="v" THEH PRINT "INPUT NEW FILE NaME "

820 IF L$="v" THEM IHPUT FN$

830 IF L$="7v" THEN DPEN #1 WS DX1 FH$ FOR WRITE

840 WRITE #1.CM$.A

8%0 CLOSE ! ;
860 PAGE OIR D1 FN$
870 END

FERDY
¥ 'T

1E1340%% DELAY LINE #142, 16 APRIL, 7?9 DONE TO 6. SGHZ.
€0
FEHDY
¥

FUVE PWWWw
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